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Artificial neural network approach for modelling nitrogen
dioxide dispersion from vehicular exhaust emissions
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Abstract

Artificial neural networks (ANNs) are useful alternative techniques in modelling the complex vehicular exhaust emission
(VEE) dispersion phenomena. This paper describes a step-by-step procedure to model the nitrogen dioxide (NO2) dispersion
phenomena using the ANN technique. The ANN-based NO2 models are developed at two air-quality-control regions (AQCRs),
one, representing, a traffic intersection (AQCR1) and the other, an arterial road (AQCR2) in the Delhi city. The models are unique
in the sense that they are developed for ‘heterogeneous1’ traffic conditions and tropical meteorology. The inputs to the model
consist of 10 meteorological and 6 traffic characteristic variables. Two-year data, from 1 January 1997 to 31 December 1998
has been used for model training and data from 1 January to 31 December 1999, for model testing and evaluation purposes. The
results show satisfactory performance of the ANN-based NO2 models on the evaluation data set at both the AQCRs (d = 0.76 for
AQCR1, andd = 0. 59 for AQCR2).
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. Introduction

Air-quality models play a significant role in all
spects of air pollution control and planning, where pre-
iction is a major component (Longhurst et al., 1996).
he current deterministic and stochastic-based vehic-
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1 It consists of light, heavy vehicles, three-wheelers: auto rick-
haws and two-wheelers: scooter and motorcycles.

ular exhaust emission (VEE) models do not take
account some basic meteorological and traffic para
ters, i.e. variations in the wind speed and direction,
perature, mixing height, pressure, atmospheric sta
and heterogeneity in traffic compositions. The de
ministic Gaussian models are based on steady
assumptions, and therefore, do not explain the
linearity present in the VEEs dispersion (Esplin, 1995).
The stochastic approach explains the non-lineari
the data and requires prior assumptions concernin
data distribution (Milionis and Davis, 1994). Further
these approaches are neither sufficiently compre
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sive nor computationally tractable for predicting the
vehicular pollutant concentrations to manage urban air
quality during poor meteorological conditions (Chen
and March, 1971). Unlike other modelling techniques,
the artificial neural networks (ANN) makes no prior
assumptions concerning the data distribution. ANNs
are capable of modelling highly non-linear relation-
ships and can be trained to accurately generalize when
presented with a new data set. These features of ANN
make it an efficient and accurate alternative tool for
modelling the VEE dispersion (Gardner and Dorling,
1998; Viotti et al., 2002; Nagendra and Khare, 2004).

ANNs are parallel computational models, com-
prised of densely interconnected adaptive processing
units. The important characteristic of neural networks
is their adaptive nature, where ‘learning by example
replaces programming’ (Bose and Liang, 1998). This
feature makes the ANN techniques very appealing in
application domains for solving highly non-linear phe-
nomena (Zurada, 1997). In general, neural networks
can be trained to approximate, virtually, any smooth
measurable function (Simpson, 1989; Hornik et al.,
1989).

ANNs have recently become important alternative
tool to conventional methods in modelling complex
non-linear relationships. In the recent past, the ANN
has been applied to model large dimensionality of eco-
logical data (Gevrey et al., 2003). Chon et al. (1996)
used Kohnen network-type of ANN, to classify the ben-
thic macro-invertebrate community data and to assign
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United States.Barciela et al. (1999)developed ANN
models for predicting short-term temporal behaviour of
phytoplankton biomass in a western Spanish Cost-Ria
de Arousa.Dimopoulos et al. (1999)developed a neu-
ral network model to estimate the lead concentration in
grasses using urban descriptors as model inputs in the
Athens city, Greece.Manel et al. (1999)compared the
performance of multiple discriminant analysis, logistic
regression and ANNs in predicting the river bird’s pres-
ence or absence from 32 variables consisting stream
altitude, slope, habitat structure, chemistry and inverte-
brate abundance. The study indicated out-performance
of the ANN model when compared with other tra-
ditional ecological modelling methods.Brosse et al.
(1999)demonstrated the superiority of ANN models
over the regression models in predicting spatial occu-
pancy and abundance of fish in a mesotrophic lake.
Ozesmi and Ozesmi (1999)developed the ANN model
to select the habitat in marsh-breeding bird species in
southwestern Lake Erie, USA.Lek and Guegan (1999)
described the applications of back-propagation algo-
rithm in ecological systems modelling.Karul et al.
(2000)used a three-layer leven berg-Marquardt feed-
forward learning algorithm to model the eutrophication
process in water bodies in Turkey.Heymans and Baird
(2000) used ANN technique to analyze the carbon
flow in the northern Benguela upwelling ecosystem of
Namiba.Antonic et al. (2001)forecasted the forest sur-
vival after building the hydroelectric power plant on the
Drava river, Croatia using the ANN.Olden and Jackson
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ew data to previously created clusters.Levine et al
1996)used ANN to classify the soil structure.Lek et al.
1996)compared multiple regression and ANN mod
n predicting density, biomass, reproduction poten
rowth in brown trout management. In another stu
aruelo and Tomasel (1997)compared the performan
f ANN models with regression models in pred

ng functional attributes of ecosystem. Both the stu
ndicated better performance of ANN models.Nunnari
t al. (1998)used ANN technique to model the pol

ants produced by alteration of photolytic cycle of N2,
ue to the presence of hydrocarbons released int
tmosphere.Lae et al. (1999)analyzed the relationshi
xisting between environmental variables (catchm
rea, fishing, conductivity, depth, altitude and latitu
nd fish yield.Scardi and Harding (1999)developed
eural network model for estimating primary prod

ion of phytoplankton in Chesapeake bay in the Eas
2002)described randomization approach for stat
ally assessing the importance of network connec
eights and the contribution of input variables in
eural network.Aitkenhead et al. (2003)developed

ocal interaction method for training neural netwo
nd found that it was comparable with traditional ba
ropagation training method in predicting the comp
ehavior of environmental time series data.Park et al
2003)used ‘unsupervised’ and ‘supervised’ netw
raining algorithms to classify the sampling sites
o predict the aquatic insect species richness in run
aters in France.Gevrey et al. (2003)evaluated partia
erivatives, weights, perturb, profile, classical stepw
nd improved stepwise methods to identify the envi
ental factors (model inputs) affecting trout abunda

model output) using the ANN.Ryan et al. (2004)used
NN technique to simulate nitrous oxide (N2O) emis-
ions from temperate grassland in New Zealand.
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results showed that ANNs were viable tool for simu-
lating complex and highly variable biological systems.

In the recent past, ANN technique has become
increasingly popular in modelling air-quality data
(Nagendra and Khare, 2004). The multilayer neural
network technique has been used to forecast the ozone
(Comrie, 1997; Gardner and Dorling, 1996, 2000), the
sulfur dioxide (Boznar et al., 1993), the NO2 (Gardner
and Dorling, 1999) and the particulate matter (Perez
and Trier, 2001) in the ambient environment. However,
this technique has very few applications in modeling
the VEE dispersions (Perez and Trier, 2001; Viotti et
al., 2002; Nagendra and Khare, 2002).

Moseholm et al. (1996)studied the usefulness
of neural network in understanding the relationship
between traffic parameters and carbon monoxide (CO)
concentration measured near an intersection, which
was sheltered from wind by multistoried buildings.
In another work,Dorzdowicz et al. (1997)developed
a line source neural network model for estimating
hourly mean concentrations of CO in the urban area
of Rosario, Italy. Eleven inputs, viz., vehicular flux in
terms of vehicles per hour of cars, taxis, median vehi-
cles, trucks and buses, wind speed and direction, solar
radiation, humidity, pressure, rain intensity and tem-
perature were used for developing three ANN-based
models. The first, with 11 input variables, the sec-
ond, with seven (excluding humidity, pressure, rain
intensity and temperature) and the third with six input
variables (excluding solar radiation, humidity, pres-
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ANN-based short- and long-term air-quality models
for forecasting vehicular air pollutant concentrations
in the city of Perugia, Italy. The models showed rea-
sonable accuracy in predicting short- and long-term
air pollutant concentrations.Kukkonen et al. (2003)
evaluated five neural networks, a linear statistical and
deterministic model in predicting the NO2 and par-
ticulate matter concentrations in the central Helsinki,
Finland. Recently,Nagendra and Khare (2004)devel-
oped ANN-based line source models for predicting CO
concentrations on an urban roadway. Ten meteorolog-
ical and six traffic characteristic variables were used
for developing these models. The results showed that
the neural network models are able to capture traffic
‘wake’ effects on the CO dispersion in the near field
regions of the roadway.

Most of the ANN studies addressed the problem
associated with pattern recognition, forecasting and
comparison of the neural network with other tradi-
tional approaches in ecological and atmospheric sci-
ences. However, the step-by-step procedure involved
in development of ANN-based models are less dis-
cussed. This paper describes a methodology consisting
of step-by-step approach in developing the ANN-based
VEE models at urban roadways for heterogeneous traf-
fic conditions and tropical meteorology. Further, the
models have been used to predict 24 h average NO2
concentrations at two AQCRs in the Delhi city, one,
traffic intersection (AQCR1) and the other, an arterial
road (AQCR2). The inputs to these models are 10 mete-
o
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ure, rain intensity and temperature). These mo
ere validated for each type of network using app

mately a set of 100 patterns. The results showed
odel predictions were comparable. The elimina
f variables from the input data set did not have
ignificant influence on predicted CO concentrat
ardner and Dorling (1999)developed multilayer pe
eptron (MLP) neural network models in the Cen
ondon using hourly NOx, NO2 and the meteorolog

cal data. The results showed better performanc
he MLP models when compared to previously de
ped regression models (Shi and Harrison, 1997) for

he same location.Perez and Trier (2001)developed
NN-based model to predict NO and NO2 concen

rations at a traffic junction in Santiago, Chile. T
esults showed that the model performed better tha
ersistence and regression models developed by
t the same location.Viotti et al. (2002)formulated
rological and six traffic characteristic variables.

. Materials and methods

The ANN approach has several advantages ove
itional phenomenological or semi-empirical mod
ince they require known input data set without
ssumptions (Gardner and Dorling, 1998). It exhibits
apid information processing and is able to develo
apping of the input and output variables. Such a m
ing can subsequently be used to predict desired
uts as a function of suitable inputs (Schalkoff, 1992).

multilayer neural network can approximate a
mooth, measurable function between input and ou
ectors by selecting a suitable set of connecting we
nd transfer functions (Hornik et al., 1989; Gardner a
orling, 1998). It consists of a system of layered int
onnected ‘neurons’ or ‘nodes’ as illustrated inFig. 1.
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Fig. 1. General feed-forward neural network architecture.

2.1. ANN-based VEE modelling approach

The model building process consists of six sequen-
tial steps:

(i) selection of the optimal ANN-based VEE model
architecture;

(ii) selection of the best activation function;
(iii) selection of the optimum learning parameters: ‘n’

(learning rate) and ‘µ’ (momentum rate);
(iv) initialization of the network weights and bias;
(v) training and testing of the model;

(vi) evaluation of the model.

2.1.1. Selection of the optimal ANN-based VEE
model architecture

The number of neurons in the input layer equals
the number of input variables (i.e. in the present work,
meteorological and traffic characteristic variables). The
output layer consists of one neuron, i.e. the pollutant
concentration. The number of neurons in the hidden
layer depends upon the number of training patterns, the
number of input/output neurons, the amount of noise in
the data, the network architecture, the type of activation
function used in the hidden layer and the training algo-

rithm (Alsugair and Al-Qudrah, 1998; Sarle, 1997).
One hidden layer is sufficient to approximate any non-
linear function in addition to input and output layers
(Hornik et al., 1989).

The number of neurons in the hidden layer is
obtained by training several networks and estimating
the corresponding errors on the test data set. A few
neurons in the hidden layer produce high training and
testing errors due to under-fitting and statistical bias.
On the contrary, too many hidden layer neurons lead to
low training error, but high testing error, due to over-
fitting and high variance (Sarle, 1997). In the past,
researchers used ‘rule of thumb’ to find the number
of neurons (H) in the hidden layer, as described below:

(i) H = number of input neurons + number of output
neurons.

(ii) The maximum number of neurons in the hidden
layer (Hmax) is given by Swingler (1996)and
Berry and Linoff (1997); Hmax is two times the
number of input layer neurons.

(iii) H = the number of the training patterns divided
by five times of the number of input and output
neurons.

The ‘rule of thumb’ failed to provide ‘optimal’ num-
ber of hidden layer neurons that subsequently affected
the model prediction accuracy. However, this study has
demonstrated that iterative approach is more efficient
and accurate in determining the optimal number of hid-
d tion
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en layer neurons, yielding minimum model predic
rror on the ‘test data set’ (Haykin, 2001).

.1.2. Activation function
The non-linear relationship between input and

ut parameters in any network requires a funct
hich can appropriately connect and/or relate the

esponding parameters (Sarle, 1997). Past air pollution
elated studies byGardner and Dorling (1999, 2000,
emonstrated that the hyperbolic sigmoid activa

unction is faster and efficient in mapping the n
inearity among the hidden layer neurons than the lo
ic sigmoid activation function (Comrie, 1997; Reg
nd Tock, 1996). Hence, in the present study the hyp
olic tangent function has been used for hidden l
eurons. Further, the input and output layer neuron

he ‘identity function’ for their respective target valu
Gardner and Dorling, 2000).
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2.1.3. Learning parameter
Multilayer neural network has the ability to learn

through training. Training requires a set of data con-
sisting of a series of input and associated output vec-
tors. A supervised back-propagation algorithm is most
commonly employed in training the multilayer neu-
ral network (Haykin, 2001). In the back-propagation
training,η andµ are used to ‘speed up’ or ‘slow down’
the convergence of error (Rumelhart et al., 1986). The
back-propagation training algorithm gives an “approx-
imation” to the trajectory in weight space, computed
by the Gradient Descent Method (Battiti, 1992). The
decrease in value of ‘η’ results in smaller changes in
the synaptic weight from one iteration to the next and
reduces the training speed. But, the increase in value
of ‘η’ helps in faster training of the network due to
the large changes in the synaptic weight and thus mak-
ing the network as unstable (i.e. oscillatory). The term
‘µ’ has been used to avoid the network oscillation
in back-propagation training algorithm. The values of
‘η’ and ‘µ’ are set between 0 and 1 (Rege and Tock,
1996; Rumelhart and McClelland, 1995). The follow-
ing guidelines exist in evaluating the optimal value of
‘η’ and ‘µ’ (Haykin, 2001):

(i) The ‘η’ and ‘µ’ converge to a local minimum in
the error surface of the network with the least num-
ber of epochs.

(ii) The ‘η’ and ‘µ’ converge to a least global mini-
mum in the error surface with the least number of
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and so avoids the occurrence of the error gradients
(Wasserman, 1989).

2.1.5. Training and testing
The neural networks are mostly trained using the

‘supervised’ learning algorithm. It is accomplished by
providing known input and output data in an ordered
manner to the network (Rumelhart and McClelland,
1995). Training involves finding the set of network
weights thus enabling the model to represent the under-
lying patterns in the training data. It is achieved by
minimizing the model error for all the input and asso-
ciated output patterns (Gardner and Dorling, 1998).
The ‘under-training’ of the network ‘traps’ the training
algorithm in ‘local’ minima and ‘over-training’ results
in high model prediction errors (Gardner and Dorling,
1998, 1999;Comrie, 1997). The over training can be
avoided by training the network on a subset of inputs
and outputs to determine weights and subsequently
tested on the remaining (quasi-independent) test data
to assess accuracy of the model predictions (Comrie,
1997). Therefore, the number of training epochs is
decided avoiding under- and/or over-training of the net-
work. The back-propagation learning algorithm is most
suitable for air-quality modelling studies (Gardner and
Dorling, 1998; Comrie, 1997). This algorithm divides
the data into three partitions namely, the ‘training data
set’, the ‘test data set’ and the ‘evaluation data set’. The
‘training data set’ forms the bulk of the data used for
the training purposes; the ‘test data set’ is used to check
t ural
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epochs.
iii) The ‘η’ and ‘µ’ converge to the network config

ration that has been best generalized with the
number of epochs.

In the present work, the optimal values of learn
arameters have been evaluated using guideline (

.1.4. Initial network weights
Before starting the training, initialization of ne

al network weights and bias (free parameters)
equired. The initial values of the synaptic weig
nd bias of the network help in fast convergenc

he training processes. In the present study, al
ree parameters of the network are set to the ran
umbers uniformly distributed within the range fro
2.4/Fi to +2.4/Fi, whereFi is the total number o

nputs. The smaller distribution range reduces the p
bility of the saturation of the neurons in the netw
he generalization performance of the trained ne
etwork model. The training is stopped when the

ormance on the ‘test data set’ results into minim
odel error. Finally, the ‘evaluation data set’ is use

alidate the model (Gardner and Dorling, 1998). The
tep-by-step procedure of the back-propagation t
ng algorithm is given below.

i) Multiply all the input by an initial random weigh
and sum the result as:

j =
H∑

j=1

wij (xi + bj);

= 1, 2, . . . , n;

= 1, 2, . . . , H (1)

herePj is the input to the ‘j’ hidden layer neuron,xi

he numerical value of theith input layer neuron,wij
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the weight of theith input layer neuron tojth hidden
layer neuron,n the number of the input layer neurons,
H the number of the hidden layer neurons andbj is the
bias value for thejth hidden layer neuron.

(ii) Transform the hidden layer output by a sigmoid
transfer functionf (Pj).

(a) Logistic function:

Qj = 1

1 + e−Pj
; j = 1, 2, . . . , H (2a)

(b) Hyperbolic tangent:

Qj = 2

1 + e−Pj
− 1; j = 1, 2, . . . , H (2b)

whereQj is the output of the hidden layer neuron ‘j’.

(iii) Multiply the hidden layer outputs by the hidden-
output layer weight and sum as:

Rk =
H∑

j=1

wjkQj + bk; k = 1, 2, . . . , m (3)

whereRk is the input to thekth output layer neuron,
wjk the weight of thejth hidden layer neuron to thekth
output layer neuron,m the number of the output layer
neuron andbk is the bias value for thekth output layer
neuron.
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for layer 1 andtth iteration:

wjk (t + 1) = wjk (t) + ηδj (t) Qk (t)

+ µ[wjk (t) − wjk (t − 1)];

j = 1, 2, . . . , H ; k = 1, 2, . . . , m (5)

whereδj is the local gradient of the network.

The local gradient for the hidden-output layerδk is
computed as follows:

δk(t) = Ek(t)Yk(t)[1 − Yk(t)]; k = 1, 2, . . . , m. (6a)

The local gradient for the input-hidden layer:

δj (t) = Qj (t)[1 − Qj (t)]
∑

δk (t)wjk (6b)

2.1.6. Stopping criteria
The stopping criteria for the back-propagation algo-

rithm are listed below.

(i) The back-propagation algorithm is considered to
have converged when the absolute rate of change
in the mean squared error (MSE) per epoch is very
small.

(ii) After an each training iteration, the network is
tested for its generalization performance. The
training process stops when the generalization per-
formance reaches the maximum on the test data set
(Haykin, 2001).

The first criteria of minimizing the MSE over a
t ner-
a he
n chs.
E ptic
w ined
n ives
t the
s ds is
‘ sed
n ed as
d stop-
p arn-
i

2

ting
t ean
iv) Transform the output,Rk by the transfer functio
to obtain the network outputsYk. The network out
puts are then compared with observed values
an error at thekth output neuron is computed:

k = Tk − Yk (4)

hereTk is the training (actual) value.
The general principle used in the back-propaga

earning method is the ‘delta rule’, which is based
he minimization of the sum of squares of the e
btained in Eq.(4). The reduction in the sum of squa
f the error is performed by iteratively modifying t
umerical values of the weights in the direction of
teepest descent with respect to the error (Battiti, 1992).
he weights in the hidden-output layer are adju
rst, followed by the adjustments of the weights in
nput-hidden layer. The weights in the successive it
ions are modified according to the following equat
raining data set does not necessarily imply good ge
lization (Haykin, 2001). The second criteria trains t
etwork iteratively based on number of training epo
ach training epoch decides the value of syna
eight and bias of the network. Thereafter, the tra
etwork is tested on the ‘test data’ set which g

he prediction error. If the prediction error exceeds
tatistical standards (here, the statistical standar
d’ value), the network is again trained with increa
umber of epochs and so the process is repeat
escribed above. In the present study, the second
ing criteria has been adopted due to its superior le

ng efficiency.

.2. Statistics for model testing and evaluation

The statistical indicators for testing and evalua
he model are systematic and unsystematic root m
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square error (RMSES and RMSEU), mean bias error
(MBE), mean square error, coefficient of determina-
tion (r2), linear best fit constant (a) and gradient (b),
mean of the observed and predicted concentration (Ō

andP̄ , respectively) and their standard deviations (σo
andσp, respectively) and ‘d’ values (Willmott, 1982). It
is not uncommon to find models that have been evalu-
ated by the correlation coefficient ‘r2’ (Gardner and
Dorling, 2000). However, the ‘r2’ statistic may not
be appropriate in assessing the accuracy of air-quality
model predictions (Comrie, 1997). The model evalu-
ation based on ‘r2’ statistics mostly fails due to the
presence of ‘lag’ between source emission quantity and
the ambient pollutant concentration. The ‘lag’ is due to
adverse meteorological conditions (inversion) which
implies the accumulation of pollutants in the ambient
environment during ‘odd’ hours of the day when there
are no source emissions (Khare and Sharma, 1999).
The ‘d’ is a descriptive statistics. It reflects the degree
to which the observed variate is accurately estimated
by the simulated variate. The ‘d’ is not a measure of
correlation or association in the formal sense, but rather
a measure of the degree (based on ensemble average) to
which the model predictions are error free. At the same
time, ‘d’ is a standardized measure in order that it may
be easily interpreted and cross-comparisons of its mag-
nitudes for a variety of models, regardless of units, can
readily be made. It varies between 0 and 1. A computed
value of 1 indicates perfect agreement between the
observed and predicted observations, while 0 connotes
c f
‘

d

w
t

2

the
V the
n ated
t is
r ‘traf-
fi les
( 79

In the present work, ANN-based NO2 models are devel-
oped at a traffic intersection and at an arterial road in
the Delhi city, considering both the meteorological and
the traffic characteristic variables. The criteria used in
developing the ANN-based NO2 models are listed in
Table 1. Ten meteorological and six traffic characteris-
tic variables have been used for the model formulation.
The models have been formulated using three choices
of input data sets. Firstly, considering both meteorolog-
ical and traffic characteristics input data (ANNNO2A);
the second, considering only meteorological input data
(ANNNO2B); the third, considering only traffic input
data (ANNNO2C). The output corresponding to these
inputs is the 24 h average NO2 concentrations. The
choice of inputs to model are directly connected to the
quantity of information given to the neural network
and is generally constituted from the meteorological
and traffic characteristic data.

The 24 h NO2 concentration data were collected
from Central Pollution Control Board (CPCB), New
Delhi for a period of 3 years from January 1997 to
December 1999, for both the AQCRs. The meteoro-
logical data, including 24 h average observations of
cloud cover, pressure, mixing height, sunshine hours,
visibility, temperature, wind speed, wind direction and
humidity were collected from Indian Meteorologi-
cal Department, New Delhi. The 24 h average traf-
fic characteristics data were collected from Central
Road Research Institute (CRRI), New Delhi, for the
respective AQCRs. The vehicles were classified into
f four
w iesel
p ped
b for
e t
a ta
u NO
m

em-
b data
f for
m R1,
t 7%
( ain-
i 33)
f ata
v g’,
‘ ran-
omplete disagreement (Willmott, 1982). The value o
d’ is expressed as:

= 1 −
∑N

i=1(Pi − Oi)2

∑N
i=1[|Pi − Ō| + |Oi − Ō|]2

(7)

hereŌ is the average of the observed data, andp are
he predicted data.

.3. Development of ANN-based NO2 models

Near the traffic intersections and busy roads,
EE dispersion is influenced by two factors: first,
atural turbulence and second, the traffic gener

urbulence (traffic wake). The natural turbulence
epresented by meteorological variables and the
c wake’ relates to the traffic characteristic variab
Gardner and Dorling, 1999; Eskridge and Hunt, 19).
our groups, viz., two wheelers, three wheelers,
heelers gasoline powered and four wheeler d
owered, for which the emission factors (develo
y the Indian Institute of Petroleum), were used
stimating CO and NO2 source strengths (Pundir e
l., 1994). Table 2provides the details of input da
sed for developing the 24 h average ANN-based2
odels.
Two-year data from 1 January 1997 to 31 Dec

er 1998 was used for the model training and the
rom 1 January to 31 December 1999 was used
odel testing and evaluation purposes. At AQC

he total data set included, 783 values. About 6
522) of the total data were used for the model tr
ng, 16% (128) for the model testing and 17% (1
or the model evaluation. About 51% of the total d
alues were missing at AQCR2. Therefore, ‘trainin
testing’ and ‘evaluation data set’ were selected
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Table 1
Criterion used in the ANN-based VEE modelling

Serial no. Item Criterion used in the present study Similar criterion used in the previous
studies

1 Criteria for selection of neural
network architecture

Input neurons = number of input variables Gardner and Dorling (1998, 1999),
Comrie (1997), Perez and Trier (2001),
Viotti et al. (2002)

Output neurons = number of output variable
Hidden neurons = smallest number of neurons
that yields a minimum prediction error on the
validation data set (Haykin, 2001)

2 Criteria for selection of neuron
activation functions

Input neurons = identity function Gardner and Dorling (1999, 2000),
Viotti et al. (2002)Output neurons = identity function

Hidden neurons = hyperbolic tangent function
(Waserman, 1989)

3 Criteria for selection of
learning parameters

The learning parameters converge to the net-
work configuration and give best performance
on the validation data with least number of
epochs/iterations (Haykin, 2001)

Viotti et al. (2002)

4 Criteria for initialization of
network weights

Network weights are uniformly distributed
inside in the range of [(−2.4/Fi) to (+2.4/Fi)],
whereFi is the total number of inputs (Haykin,
2001)

Gardner and Dorling (1998)

5 Training algorithm Back-propagation (Rumelheart and McClelland,
1995)

Gardner and Dorling (1999), Comrie
(1997), Rege and Tock (1996), Perez and
Trier (2001), Viotti et al. (2002)

6 Stopping criteria for neural
network training

Stopping criteria: after each training
iterations/epochs the network is tested for its
performance on validation data set. The training
process is stopped when the performance reach
the maximum on validation data set (Haykin,
2001; Sarle, 1997)

Gardner and Dorling (1998, 1999,
2000), Viotti et al. (2002)

7 Statistics for model validation RMSE and ‘d’ (Willmott, 1982) Gardner and Dorling (1999, 2000),
Comrie (1997), Viotti et al. (2002)

8 ANN modelling data set Training data set: for training neural network Gardner and Dorling (1999), Comrie
(1997), Viotti et al. (2002)Test data set: for testing of neural network

during training
Evaluation data set: for performance evaluation
of trained neural network model

domly for the development of the ANN-based NO2
models. Out of 49% of available data, 33% (262)
data were used for training, 10% (74) used for test-
ing and 6% (47), for the model evaluation. The random
selections of the data for training, testing and for the
evaluation purposes are based on seasonal variations
in meteorology and pollutant concentrations in the
AQCRs.

2.3.1. Meteorological and traffic characteristic
variables as model input

The ANNNO2A1 and ANNNO2A2 models were
developed for AQCR1 and AQCR2, respectively, using

daily average meteorological and traffic characteristics
as predictor variables (17). Several hundred experi-
ments were performed to determine the best combi-
nation of ‘η’, ‘ µ’, the number of hidden layers,H,
the learning algorithm and the transfer function. The
guidelines (discussed under Section2) were consid-
ered for choosing the optimum ‘η’, ‘ µ’, the number
of hidden layers,H, the learning algorithm and the
activation function. The computational runs were con-
ducted using the Stuttgart neural network simulator
(SNNS) software (ftp://ftp.informatik.uni-stuttgart.de)
to develop the optimum ANN-based NO2 model. The
inputs to these runs were the meteorological and traf-

ftp://ftp.informatik.uni-stuttgart.de/
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Table 2
Input variable for the ANN-based NO2 model

Model ID Architecture Input variables

Meteorological Traffic characteristics

ANNNO2A1, ANNNO2A2 17:5:1 Cloud cover, humidity, mixing height,
pressure, Pasquill stabilitya, sun shine
hour, temperature, visibility, sin (wind
direction)b, cos (wind direction)b, wind
speed

Two wheeler, three wheeler, four wheeler
(gasoline), four wheeler (diesel), source
strength (CO) and source strength (NO2)

ANNNO2B1, ANNNO2B2 10:5:1 Cloud cover, humidity, mixing height,
pressure, sun shine hour, temperature,
visibility, sin (wind direction), cos
(wind direction), wind speed

ANNNO2C1, ANNNO2C2 5:5:1 Two wheeler, three wheeler, four wheeler
(gasoline), four wheeler (diesel) and source
strength of NO2

a Estimated using Pasquill–Gifford stability scheme (Hanna et al., 1982).
b Wind direction data has been dichotomized using sine and cosine function.

fic characteristic variables in the input layer (17), the
output was in terms of only pollutant concentration,
i.e. NO2. The number of neurons in the hidden layer
were varied from 2 to 34. The descriptive statistics test,
i.e. ‘d’ value and RMSE (Willmott, 1982) were used
to arrive at optimum number of neurons in the hidden
layer. As a result, a fully connected feed-forward neu-
ral network with 17 neurons in the input layer, a single
hidden layer, with five hidden neurons and a single
neuron in the output layer shows best prediction on
the ‘test data set’.Table 3shows the statistics of 24 h
average ANN-based NO2 models with the number of
neurons in the hidden layer.Tables 4 and 5lists the per-
formance of the ANNNO2A1 and ANNNO2A2 models
during generalization on ‘test data set’ at AQCR1 and
AQCR2, respectively. After repeated experiments, the
best model prediction on the test data set was achieved
at 150 training epochs with ‘η’ = 0.01 and ‘µ’ = 0.7 at
AQCR1; at AQCR2, the best ANNNO2A2 model pre-
diction was achieved after 250 training epochs with
‘η’ = 0.001 and ‘µ’ = 0.3. Fig. 2shows the architecture
of the models with 17 predictor variables (17:5:1).

2.3.2. Meteorological variables as model input
The ANNNO2B1 and ANNNO2B2 models were

developed for AQCR1 and AQCR2, respectively, using
daily average meteorological data as predictor vari-
ables. The purpose of formulating this model is
two-fold. First, to develop ANN-based NO2 models

(ANNNO2B) to forecast 24 h average NO2 concen-
tration using routinely monitored meteorological vari-
ables, second, to study the sensitivity of the traffic char-
acteristic variables. The number of training and valida-
tion patterns remains same as that of the ANNNO2A
model. The network architecture of 10:5:1 was used
for the development of the ANNNO2B model (Fig. 3).
At AQCR1, the ANNNO2B1 model predictions were
accurate after 500 training epoch having ‘η’ = 0.001
and ‘µ’ = 0.9 (Table 6). At AQCR2, the model predic-
tions were accurate (‘η’ = 0.001 and ‘µ’ = 0.5) after 400
training epoch (Table 7).

2.3.3. Traffic characteristic variables as model
input

The ANNNO2C1 and ANNNO2C2 models were
developed for AQCR1 and AQCR2, respectively, using
daily average traffic characteristics data as predic-
tor variables. These models were developed with five
traffic characteristic variables as input to the model,
i.e. two-wheeler, three-wheeler, four-wheeler gasoline-
powered, four-wheeler diesel-powered and the source
strength of NO2. The 5:5:1 network architecture was
used for the development of the models (Fig. 4). At
AQCR1, the best ANNNO2C1 model prediction was
obtained at ‘η’ = 0.001 and ‘µ’=0.3, with 40 training
epochs (Table 8). At AQCR2, the best ANNNO2C2
model prediction was obtained on the test data set at 160
training epochs with ‘η’ = 0.001 and ‘µ’=0.5 (Table 9).
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Table 3
Experimental simulation results for optimization of the hidden layer
neurons for the 24 h ANN-based NO2 model

Number of
hidden neurons

Mean square error after
network stabilization

Statistical parameter

d RMSE

2 0.04657 0.58 7.96
3 0.04046 0.44 10.29
4 0.03803 0.47 10.45
5 0.03777 0.63 7.18
6 0.03774 0.44 10.69
7 0.03802 0.48 10.18
8 0.03657 0.45 9.89
9 0.03647 0.44 11.13

10 0.03758 0.45 11.11
11 0.03703 0.40 11.98
12 0.03984 0.40 11.13
13 0.03994 0.42 10.49
14 0.04030 0.44 10.18
15 0.03982 0.42 10.52
16 0.03731 0.39 12.35
17 0.04014 0.40 11.08
18 0.03815 0.39 11.93
19 0.03798 0.39 11.99
20 0.04151 0.40 10.80
21 0.03896 0.39 12.00
22 0.04000 0.47 9.81
23 0.03888 0.40 11.83
24 0.04538 0.56 7.91
25 0.03896 0.40 11.87
26 0.03843 0.44 11.13
27 0.04216 0.56 9.07
28 0.04604 0.58 7.70
29 0.04464 0.52 8.34
30 0.04576 0.57 7.80
31 0.04606 0.58 7.67
32 0.03871 0.40 11.95
33 0.04299 0.43 9.74
34 0.04614 0.58 7.69

Table 4
Estimates of the statistics during generalization of the ANNNO2A1

model

Epoch d RMSE

50 0.597 7.58
100 0.625 7.20
150 0.627 7.18
200 0.625 7.29
250 0.622 7.32
300 0.467 9.0
350 0.47 9.95
400 0.44 10.69
450 0.44 10.48
500 0.44 10.78

Table 5
Estimates of the statistics during generalization of the ANNNO2A2

model

Epoch d RMSE

50 0.51 20.2
100 0.54 19.3
150 0.539 18.85
200 0.545 18.66
250 0.546 18.65
300 0.543 18.79
350 0.535 19.06
400 0.529 19.38
450 0.523 19.67

Table 6
Estimates of the statistics during generalization of the ANNNO2B1

model

Epoch d RMSE

100 0.58 8.23
200 0.59 8.06
300 0.59 7.93
400 0.598 7.86
500 0.598 7.82
600 0.595 7.82
700 0.594 7.85
800 0.594 7.87
900 0.593 7.89

1000 0.592 7.90

Table 7
Estimates of the statistics during generalization of the ANNNO2B2

model

Epoch d RMSE

50 0.524 19.4
100 0.528 19.16
150 0.528 19.16
200 0.528 19.15
250 0.529 19.13
300 0.529 19.11
350 0.53 19.11
400 0.53 19.10
450 0.539 19.11
500 0.539 19.11
550 0.533 19.12
600 0.533 19.13
650 0.529 19.16
700 0.529 19.18
750 0.528 19.23
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Fig. 2. Structure of 17:5:1 A
NN-based NO2 model.
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Fig. 3. Structure of 10:5:1 ANN-based NO2 model.

Fig. 4. Structure of 5:5:1 ANN-based NO2 model.
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Table 8
Estimates of the statistics during generalization of the ANNNO2C1

model

Epoch d RMSE

5 0.265 29.21
10 0.34 23.07
15 0.43 12.59
20 0.44 9.76
25 0.44 9.03
30 0.44 8.84
35 0.44 8.77
40 0.44 8.75
45 0.43 8.75
50 0.40 8.75
55 0.40 8.75
60 0.40 8.75
65 0.40 8.75
70 0.40 8.75
75 0.40 8.75
80 0.40 8.75
85 0.40 8.75
90 0.40 8.75
95 0.40 8.75

100 0.40 8.75

Table 9
Estimates of the statistics during generalization of the ANNNO2C2

model

Epoch d RMSE

20 0.41 19.55
40 0.41 19.55
60 0.41 19.55
80 0.41 19.54

100 0.41 19.52
120 0.41 19.52
140 0.41 19.51
160 0.41 19.48
180 0.41 19.50
200 0.41 19.52

3. Results and discussion

Table 10 gives the performance statistics of the
trained ANN-based NO2 models prediction on the eval-
uation data set at both the AQCRs. The mean values
of ANNNO2A1 and ANNNO2A2 model predictions
are slightly lower than the observed mean values. The
MBE values at AQCR1 and AQCR2 are negative indi-
cating the tendency of the models to under predict.
The standard deviations (σP) of the ANNNO2A1 and
ANNNO2A2 model predictions are 6.9 and 4.87 ppb,

respectively. At AQCR1,σP is close to the standard
deviation of the observed data. At AQCR2, the differ-
ence between the standard deviations of the observed
and predicted data is quite high. This explains that
the ANNNO2A1 model is reproducing the variations
in the evaluation data set at AQCR1 with better accu-
racy than the ANNNO2A2 model. A low RMSES value
at AQCR1 indicates that the ANNNO2A1 model pre-
dictions are closely matching with actual observations
when compared with ANNNO2A2 model predictions
at AQCR2. Further, the‘d’ values for ANNNO2A1 and
ANNNO2A2 models are 0.76 and 0.59, respectively.
This explains that 76% of the model predictions are
error free at AQCR1 and 59% at AQCR2. It shows
that the ANNNO2A1 model is more accurate than the
ANNNO2A2.

Table 10summarises the performance statistics of
the ANNNO2B1 and ANNNO2B2 model predictions on
the evaluation data set at AQCR1 and AQCR2, respec-
tively. The mean values of the predicted NO2 concen-
tration at both the AQCRs are lower than the observed
mean values. The MBE values at AQCR1 and AQCR2
are−4.29 and−3.5 ppb, respectively, indicating the
tendency of the models to under predict. The differ-
ence between the standard deviation of the observed
and the predicted data at AQCR2 is higher than at
AQCR1. It explains that the ANNNO2B1 model predic-
tions are closer to observed values when compared with
the ANNNO2B2 model. Further, a low RMSES value at
AQCR1 also indicates that the ANNNO2B1 model pre-
d ions
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Table 10
Performance statistics the ANN-based NO2 models

Site Model ID Statistic

Ō (ppb) P̄ (ppb) σO (ppb) σP (ppb) MBE
(ppb)

MSE
(ppb)

RMSE r2 d a (ppb) b

RMSES

(ppb)
RMSEU

(ppb)

AQCR1 ANNNO2A1 35.1 31.7 10.4 6.9 −3.4 69.06 6.5 5.05 0.47 0.76 15.7 0.46
ANNNO2B1 35.1 30.8 10.4 6.56 −4.29 78.32 7.41 4.86 0.45 0.73 16.04 0.42
ANNNO2C1 35.1 33.1 10.4 0.74 −1.94 110.9 10.49 0.75 0.1 0.25 32.89 0.007

AQCR2 ANNNO2A2 30.2 27.8 9.4 4.87 −2.34 77.44 8.01 4.41 0.18 0.59 21.2 0.2
ANNNO2B2 30.2 26.7 9.4 4.68 −3.5 90.25 8.53 4.35 0.12 0.55 21.46 0.17
ANNNO2C2 30.2 27.3 9.4 0.44 −2.85 96.43 9.86 0.44 0.03 0.3 27.57 −0.01

are inadequate to reproduce the variations in the eval-
uation data set. Further, the high RMSES values also
indicate that both the models perform poorly on the
evaluation data set. The‘d’ values for the ANNNO2C1
and ANNNO2C2 models explain that at AQCR1, 25%
of the model predictions are errors free and at AQCR2,
it is 30%. It shows that both the models perform poorly
on the evaluation data set.

3.1. Comparative performance of the models

For short-term average data (1 h), it is evident that
the relationship between NO2 with meteorological and
traffic characteristic variables is complex and highly
non-linear (Gardner and Dorling, 1999, 2000). Comrie
(1997)andGardner and Dorling (1998, 2000)observed
the out-performance of the neural network model at
sub daily time scale when the non-linearity of the sys-
tem was more apparent and only small to marginal
gains in model performance at the daily time scale.
The present study supports the effect of the increase
in averaging time period on the prediction perfor-
mance of the models. As a result, marginal differ-
ence in the model performance has been observed
after elimination of the traffic characteristic variables
from the model input. It may be due to the increase
in time averaging interval (1–24 h), which smoothens
out the temporal variations of the pollutant concen-
tration with meteorological and traffic characteris-
tic variables, which, in turn, implies that the real
n ffic
r orm
( d
b y

0.91 ppb for the ANNNO2B1 model when compared
to the ANNNO2A1. However, the RMSES value for
the ANNNO2B2 model is showing 0.52 ppb increase
when compared to the ANNNO2A2. Further, the ‘d’
values for AQCR1 indicates that, the ANNNO2B1
(d = 0.73) model performance decreases marginally
when compared to the ANNNO2A1 (d = 0.76). Simi-
larly, at AQCR2, the ANNNO2B2 model performance
(d = 0.55) also shows marginal decrease when com-
pared to the ANNNO2A2 model (d = 0.59). The ‘d’
value indicates that the ANNNO2C1 model (d = 0.25)
performs poorly at AQCR1, when compared with the
ANNNO2A1 (d = 0.76) and the ANNNO2B1 (d = 0.73)
models. At AQCR2, the ANNNO2C2 model (d = 0.3)
also shows poor performance when compared with
the ANNNO2B2 (d = 0.55) and ANNNO2A2 models
(d = 0.59). The poor performance of the models can
be explained by the following facts. Firstly, these mod-
els are developed considering only traffic characteris-
tic variables as their inputs. As a result, the models
explain the NO2 dispersion only due to the ‘traffic
wake’ effects. Secondly, due to the absence of mete-
orological input variables, these models fail to take
into account the ‘lag effect’ (Khare and Sharma, 1999).
This phenomena frequently occurs during critical win-
ter periods (November–March), when inversion condi-
tions prevail during night time, particularly 4–6 h after
6:00 p.m. (10:00 p.m.–6:00 a.m.). As result, the mod-
els fail to explain the seasonal variations present in the
NO dispersion characteristics.
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ping criteria (Gardner and Dorling, 1998; Dimopoulos
et al., 1999). Nevertheless, in most studies, the prob-
lem associated in developing optimal ANN models is
reported (Gevrey et al., 2003; Aitkenhead et al., 2003;
Olden and Jackson, 2002; Ozesmi and Ozesmi, 1999).
Over-training is one of the main concerns in devel-
oping ANN models. It occurs when network learns
the noisy details in training the data, which results in
poor generalization capabilities.Paruelo and Tomasel
(1997) used the two parameters of the network, i.e.
selection optimum number of hidden neurons and error
goal to reduce over-training problem.Lek et al. (1996)
andLae et al. (1999)used fixed number of iterations
to avoid over-training of networks. However, the val-
idation of these methods indicated the development
of over trained ANN models. The step-by-step pro-
cedure discussed in the present work addresses the
problems encountered during development of optimum
ANN-based models using back-propagation training
algorithm.

4. Conclusions

The present work provides vital statistics and guide-
lines on the choice of the ANN-based VEE modelling
parameters, e.g. ‘when to stop’ the training process
and determination of the learning parameters in back-
propagation learning algorithm. Multilayer neural net-
work technique has been used to develop short-term
A n
p the
D ,
m col-
l used
f sed
V fol-
l ith
b dly,
w nly
t sed
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are used as inputs (d = 0.25, for AQCR1 andd = 0.3, for
AQCR2).
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