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Abstract

Artificial neural networks (ANNSs) are useful alternative techniques in modelling the complex vehicular exhaust emission
(VEE) dispersion phenomena. This paper describes a step-by-step procedure to model the nitrogen digxidisgdli&ion
phenomena using the ANN technique. The ANN-based MOdels are developed at two air-quality-control regions (AQCRS),
one, representing, a traffic intersection (AQCR1) and the other, an arterial road (AQCR2) in the Delhi city. The models are unique
in the sense that they are developed for ‘heterogeretaffic conditions and tropical meteorology. The inputs to the model
consist of 10 meteorological and 6 traffic characteristic variables. Two-year data, from 1 January 1997 to 31 December 1998
has been used for model training and data from 1 January to 31 December 1999, for model testing and evaluation purposes. The
results show satisfactory performance of the ANN-based i@dels on the evaluation data set at both the AQ@RSX 76 for
AQCR1, andZ=0. 59 for AQCR2).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ular exhaust emission (VEE) models do not take into
account some basic meteorological and traffic parame-
Air-quality models play a significant role in all ters,i.e.variationsinthe wind speed and direction, tem-
aspects of air pollution control and planning, where pre- perature, mixing height, pressure, atmospheric stability
diction is a major component¢nghurst et al., 1996 and heterogeneity in traffic compositions. The deter-
The current deterministic and stochastic-based vehic- ministic Gaussian models are based on steady state
assumptions, and therefore, do not explain the non-
- linearity presentinthe VEEs dispersidisplin, 1995.
* Corresponding author. Tel.: +91 11 26591212; The stochastic approach explains the non-linearity in
fax:];gl %15;8§?037i( k@ aivilitd.emetin (M. Kh the data and requires prior assumptions concerning the
mail address: mukeshk@civilitd emet.in (M. Khare) data distribution Milionis and Davis, 1994 Further,

11t consists of light, heavy vehicles, three-wheelers: auto rick- - v
shaws and two-wheelers: scooter and motorcycles. these approaches are neither sufficiently comprehen-
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sive nor computationally tractable for predicting the United StatesBarciela et al. (1999)eveloped ANN
vehicular pollutant concentrations to manage urban air models for predicting short-term temporal behaviour of
quality during poor meteorological condition€ten phytoplankton biomass in a western Spanish Cost-Ria
and March, 1971 Unlike other modelling techniques, de ArousaDimopoulos et al. (1999 eveloped a neu-
the artificial neural networks (ANN) makes no prior ral network model to estimate the lead concentration in
assumptions concerning the data distribution. ANNs grasses using urban descriptors as model inputs in the
are capable of modelling highly non-linear relation- Athens city, GreecéManel et al. (1999yompared the
ships and can be trained to accurately generalize whenperformance of multiple discriminant analysis, logistic
presented with a new data set. These features of ANN regression and ANNSs in predicting the river bird’s pres-
make it an efficient and accurate alternative tool for ence or absence from 32 variables consisting stream
modelling the VEE dispersiorGardner and Dorling,  altitude, slope, habitat structure, chemistry and inverte-
1998; Viotti et al., 2002; Nagendra and Khare, 2004  brate abundance. The study indicated out-performance
ANNSs are parallel computational models, com- of the ANN model when compared with other tra-
prised of densely interconnected adaptive processingditional ecological modelling method8rosse et al.
units. The important characteristic of neural networks (1999)demonstrated the superiority of ANN models
is their adaptive nature, where ‘learning by example over the regression models in predicting spatial occu-
replaces programmingBpse and Liang, 1998This pancy and abundance of fish in a mesotrophic lake.
feature makes the ANN techniques very appealing in Ozesmiand Ozesmi (1998¢veloped the ANN model
application domains for solving highly non-linear phe- to select the habitat in marsh-breeding bird species in
nomena Zurada, 199Y. In general, neural networks  southwestern Lake Erie, USAek and Guegan (1999)
can be trained to approximate, virtually, any smooth described the applications of back-propagation algo-
measurable functionSimpson, 1989; Hornik et al.,  rithm in ecological systems modellinglarul et al.
1989. (2000)used a three-layer leven berg-Marquardt feed-
ANNSs have recently become important alternative forward learning algorithm to model the eutrophication
tool to conventional methods in modelling complex process in water bodies in Turkéyeymans and Baird
non-linear relationships. In the recent past, the ANN (2000) used ANN technique to analyze the carbon
has been applied to model large dimensionality of eco- flow in the northern Benguela upwelling ecosystem of
logical data Gevrey et al., 2003 Chon et al. (1996) NamibaAntonic et al. (2001jorecasted the forest sur-
used Kohnen network-type of ANN, to classify the ben- vival after building the hydroelectric power plant on the
thic macro-invertebrate community data and to assign Dravariver, Croatia using the ANKIden and Jackson
new data to previously created clustdrsvine et al. (2002)described randomization approach for statisti-
(1996)used ANN to classify the soil structutesk et al. cally assessing the importance of network connection
(1996)compared multiple regression and ANN models weights and the contribution of input variables in the
in predicting density, biomass, reproduction potential, neural networkAitkenhead et al. (2003)eveloped a
growth in brown trout management. In another study, local interaction method for training neural networks
Paruelo and Tomasel (199%mpared the performance and found that it was comparable with traditional back-
of ANN models with regression models in predict- propagation training method in predicting the complex
ing functional attributes of ecosystem. Both the studies behavior of environmental time series da&®ark et al.
indicated better performance of ANN modé\sinnari (2003)used ‘unsupervised’ and ‘supervised’ network
et al. (1998used ANN technique to model the pollu- training algorithms to classify the sampling sites and
tants produced by alteration of photolytic cycle of NO  to predict the aquatic insect species richness in running
due to the presence of hydrocarbons released into thewaters in Francesevrey et al. (2003valuated partial
atmospherd.ae etal. (1999nalyzedtherelationships  derivatives, weights, perturb, profile, classical stepwise
existing between environmental variables (catchment and improved stepwise methods to identify the environ-
area, fishing, conductivity, depth, altitude and latitude) mental factors (model inputs) affecting troutabundance
and fish yield Scardi and Harding (199%@)eveloped a  (model output) using the ANNRyan et al. (2004)ised
neural network model for estimating primary produc- ANN technique to simulate nitrous oxide §8) emis-
tion of phytoplankton in Chesapeake bay in the Eastern sions from temperate grassland in New Zealand. The
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results showed that ANNs were viable tool for simu- ANN-based short- and long-term air-quality models
lating complex and highly variable biological systems. for forecasting vehicular air pollutant concentrations
In the recent past, ANN technique has become in the city of Perugia, Italy. The models showed rea-
increasingly popular in modelling air-quality data sonable accuracy in predicting short- and long-term
(Nagendra and Khare, 2004The multilayer neural  air pollutant concentrationd&ukkonen et al. (2003)
network technique has been used to forecast the ozoneevaluated five neural networks, a linear statistical and
(Comrie, 1997; Gardner and Dorling, 1996, 2DGBe deterministic model in predicting the NCand par-
sulfur dioxide Boznar et al., 1993the NG (Gardner ticulate matter concentrations in the central Helsinki,
and Dorling, 1999 and the particulate mattePérez Finland. RecentlyNagendra and Khare (200dgvel-
and Trier, 200)in the ambient environment. However, oped ANN-based line source models for predicting CO
this technique has very few applications in modeling concentrations on an urban roadway. Ten meteorolog-
the VEE dispersionsRerez and Trier, 2001; Viotti et  ical and six traffic characteristic variables were used
al., 2002; Nagendra and Khare, 2002 for developing these models. The results showed that
Moseholm et al. (1996)studied the usefulness the neural network models are able to capture traffic
of neural network in understanding the relationship ‘wake’ effects on the CO dispersion in the near field
between traffic parameters and carbon monoxide (CO) regions of the roadway.
concentration measured near an intersection, which  Most of the ANN studies addressed the problem
was sheltered from wind by multistoried buildings. associated with pattern recognition, forecasting and
In another work Dorzdowicz et al. (1997)leveloped comparison of the neural network with other tradi-
a line source neural network model for estimating tional approaches in ecological and atmospheric sci-
hourly mean concentrations of CO in the urban area ences. However, the step-by-step procedure involved
of Rosario, Italy. Eleven inputs, viz., vehicular flux in in development of ANN-based models are less dis-
terms of vehicles per hour of cars, taxis, median vehi- cussed. This paper describes a methodology consisting
cles, trucks and buses, wind speed and direction, solarof step-by-step approachin developing the ANN-based
radiation, humidity, pressure, rain intensity and tem- VEE models at urban roadways for heterogeneous traf-
perature were used for developing three ANN-based fic conditions and tropical meteorology. Further, the
models. The first, with 11 input variables, the sec- models have been used to predict 24 h average NO
ond, with seven (excluding humidity, pressure, rain concentrations at two AQCRs in the Delhi city, one,
intensity and temperature) and the third with six input traffic intersection (AQCR1) and the other, an arterial
variables (excluding solar radiation, humidity, pres- road (AQCR2). The inputs tothese models are 10 mete-
sure, rain intensity and temperature). These models orological and six traffic characteristic variables.
were validated for each type of network using approx-
imately a sgt c_)f 100 patterns. The results shpvyed _that 2. Materials and methods
model predictions were comparable. The elimination
of variables from the input data set did not have any
significant influence on predicted CO concentration.
Gardner and Dorling (199%eveloped multilayer per-
ceptron (MLP) neural network models in the Central assumptionsGardner and Dorling, 1998It exhibits
London using hourly N@ NO, and the meteorolog-  rapid information processing and is able to develop a
ical data. The results showed better performance of mapping of the input and output variables. Such a map-
the MLP models when compared to previously devel- ping can subsequently be used to predict desired out-

The ANN approach has several advantages over tra-
ditional phenomenological or semi-empirical models,
since they require known input data set without any

oped regression modelSltfi and Harrison, 1997or
the same locatiorPerez and Trier (2001developed
ANN-based model to predict NO and N@oncen-
trations at a traffic junction in Santiago, Chile. The

puts as a function of suitable inpuSdhalkoff, 1992.

A multilayer neural network can approximate any
smooth, measurable function between input and output
vectors by selecting a suitable set of connecting weights

results showed that the model performed better than theand transfer functions{ornik etal., 1989; Gardner and
persistence and regression models developed by themDorling, 1998. It consists of a system of layered inter-

at the same locatiorViotti et al. (2002)formulated

connected ‘neurons’ or ‘nodes’ as illustratedHig. 1
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Fig. 1. General feed-forward neural network architecture.
2.1. ANN-based VEE modelling approach

The model building process consists of six sequen-
tial steps:

(i) selection of the optimal ANN-based VEE model

architecture;

(ii) selection of the best activation function;

(iii) selection of the optimum learning parameters:
(learning rate) andu’ (momentum rate);

(iv) initialization of the network weights and bias;

(v) training and testing of the model;

(vi) evaluation of the model.

2.1.1. Selection of the optimal ANN-based VEE
model architecture

The number of neurons in the input layer equals
the number of input variables (i.e. in the present work,
meteorological and traffic characteristic variables). The
output layer consists of one neuron, i.e. the pollutant
concentration. The number of neurons in the hidden
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rithm (Alsugair and Al-Qudrah, 1998; Sarle, 1997
One hidden layer is sufficient to approximate any non-
linear function in addition to input and output layers
(Hornik et al., 198).

The number of neurons in the hidden layer is
obtained by training several networks and estimating
the corresponding errors on the test data set. A few
neurons in the hidden layer produce high training and
testing errors due to under-fitting and statistical bias.
On the contrary, too many hidden layer neurons lead to
low training error, but high testing error, due to over-
fitting and high varianceSarle, 199Y). In the past,
researchers used ‘rule of thumb’ to find the number
of neurons ) in the hidden layer, as described below:

(i) H=number of input neurons + number of output
neurons.

(i) The maximum number of neurons in the hidden
layer (Hmax) is given by Swingler (1996)and
Berry and Linoff (1997) Hnay is two times the
number of input layer neurons.

(i) H=the number of the training patterns divided
by five times of the number of input and output
neurons.

The ‘rule of thumb’ failed to provide ‘optimal’ num-
ber of hidden layer neurons that subsequently affected
the model prediction accuracy. However, this study has
demonstrated that iterative approach is more efficient
and accurate in determining the optimal number of hid-
den layer neurons, yielding minimum model prediction
error on the ‘test data setHaykin, 200).

2.1.2. Activation function

The non-linear relationship between input and out-
put parameters in any network requires a function,
which can appropriately connect and/or relate the cor-
responding parameteiS4rle, 199Y. Past air pollution-
related studies bgardner and Dorling (1999, 20Q0)
demonstrated that the hyperbolic sigmoid activation
function is faster and efficient in mapping the non-
linearity among the hidden layer neurons than the logis-
tic sigmoid activation functionqGomrie, 1997; Rege
and Tock, 1995 Hence, in the present study the hyper-

layer depends upon the number of training patterns, the bolic tangent function has been used for hidden layer

number of input/output neurons, the amount of noise in
the data, the network architecture, the type of activation
function used in the hidden layer and the training algo-

neurons. Further, the input and output layer neurons use
the ‘identity function’ for their respective target values
(Gardner and Dorling, 2000
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2.1.3. Learning parameter and so avoids the occurrence of the error gradients
Multilayer neural network has the ability to learn (Wasserman, 1989
through training. Training requires a set of data con-
sisting of a series of input and associated output vec- 2.1.5. Training and testing
tors. A supervised back-propagation algorithm is most ~ The neural networks are mostly trained using the
commonly employed in training the multilayer neu- ‘supervised’ learning algorithm. It is accomplished by
ral network Haykin, 200). In the back-propagation  providing known input and output data in an ordered
training,n andu are used to ‘speed up’ or ‘slow down’ manner to the networkRumelhart and McClelland,
the convergence of erroR(melhart et al., 1986The 1995. Training involves finding the set of network
back-propagation training algorithm gives an “approx- Wweights thus enabling the model to represent the under-
imation” to the trajectory in weight space, computed lying patterns in the training data. It is achieved by
by the Gradient Descent MethoBdttiti, 1992. The minimizing the model error for all the input and asso-
decrease in value ofy* results in smaller changes in  ciated output patternsGardner and Dorling, 1998
the synaptic weight from one iteration to the next and The ‘under-training’ of the network ‘traps’ the training
reduces the training speed. But, the increase in value algorithm in ‘local’ minima and ‘over-training’ results
of ‘n’ helps in faster training of the network due to in high model prediction errorsardner and Dorling,
the large changes in the synaptic weight and thus mak- 1998 1999;Comrie, 1997. The over training can be
ing the network as unstable (i.e. oscillatory). The term avoided by training the network on a subset of inputs
‘i’ has been used to avoid the network oscillation and outputs to determine weights and subsequently
in back-propagation training algorithm. The values of tested on the remaining (quasi-independent) test data
‘n’ and ‘u’ are set between 0 and Ré¢ge and Tock, to assess accuracy of the model predictidden(rie,
1996; Rumelhart and McClelland, 1995 he follow- 1997. Therefore, the number of training epochs is
ing guidelines exist in evaluating the optimal value of decided avoiding under-and/or over-training of the net-
‘n’and ‘u’ (Haykin, 200): work. The back-propagation learning algorithm is most
. C L . ) suitable for air-quality modelling studie&ardner and
(i) The ‘' and ', converge to a local minimum in i 1998: Comrie, 1997 This algorithm divides
the error surface of the network with the least num- the data into three partitions namely, the ‘training data
.. ber ?f 'e pochs., . set’, the ‘test data set’ and the ‘evaluation data set’. The
(ii) The " and 'y’ converge tq a least global mini- ‘training data set’ forms the bulk of the data used for
mum in the error surface with the least number of the training purposes; the ‘test data set’ is used to check
epO(‘:h,s. L _ the generalization performance of the trained neural
(i) The "y’ and ‘u” converge to the network configu- oy o model. The training is stopped when the per-
ration that has been best generalized with theleaStformance on the ‘test data set’ results into minimum
number of epochs. model error. Finally, the ‘evaluation data set’ is used to
In the present work, the optimal values of learning validate the modelGardner and Dorling, 1998The
parameters have been evaluated using guideline (iii). step-by-step procedure of the back-propagation train-
ing algorithm is given below.
2.14. Initial network weights (i) Multiply all the input by an initial random weight
Before starting the training, initialization of neu- and sum the result as:
ral network weights and bias (free parameters) are
required. The initial values of the synaptic weights "
and bias of the network help in fast convergence of Pj= ZU’U (xi +bj);
the training processes. In the present study, all the =1
free parameters of the network are set to the randomi =1,2, ..., n;
numbers uniformly distributed within the range from |
—2.4/F; to +2.4F;, whereF; is the total number of j=12....H (1)
inputs. The smaller distribution range reduces the prob- whereP; is the input to the;* hidden layer neurony;
ability of the saturation of the neurons in the network the numerical value of théh input layer neuromy;;
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the weight of theth input layer neuron tgth hidden for layer 1 andth iteration:
layer neurong the number of the input layer neurons,
H the number of the hidden layer neurons ants the Wik (¢ + 1) = wje (1) +n8; (1) Ok (1)

bias value for thgth hidden layer neuron. + plwje (1) — wi (¢ — 1)];
(i) Transform the hidden layer output by a sigmoid j=1,2,....H; k=12,...,m (5)
transfer functiorf (P;).

whered; is the local gradient of the network.

(@) Logistic function: The local gradient for the hidden-output laygris

1 computed as follows:
e (1) = E @Y1 = k(@] k=1,2,...,m.(6a)
(b) Hyperbolic tangent: The local gradient for the input-hidden layer:
2
Qj= T1e? 1, j=12....H (2b) 8 (1) =0, (1 — ;O & (wj (6b)
whereQ; is the output of the hidden layer neurgh 2.1.6. Stopping criteria

The stopping criteria for the back-propagation algo-

(iif) Multiply the hidden layer outputs by the hidden-  iihm are listed below.

output layer weight and sum as:
(i) The back-propagation algorithm is considered to

A _ have converged when the absolute rate of change
Ry = Z wikQj+be k=12....m ©) in the mean squared error (MSE) per epoch is very
j=1 small.

(i) After an each training iteration, the network is
tested for its generalization performance. The
training process stops when the generalization per-
formance reaches the maximum on the test data set
(Haykin, 200).

whereRy is the input to thekth output layer neuron,
w jx the weight of thgth hidden layer neuron to thigh
output layer neurongn the number of the output layer
neuron andy is the bias value for theth output layer
neuron.

The first criteria of minimizing the MSE over a
training data set does not necessarily imply good gener-
alization Haykin, 200). The second criteria trains the
network iteratively based on number of training epochs.
Each training epoch decides the value of synaptic

(iv) Transform the outputRy by the transfer function
to obtain the network output&. The network out-
puts are then compared with observed values, and
an error at théth output neuron is computed:

Ep =T, — Vi @) weight and bias of the network. Thereafter, the trained
network is tested on the ‘test data’ set which gives
whereTy is the training (actual) value. the prediction error. If the prediction error exceeds the

The general principle used in the back-propagation statistical standards (here, the statistical standards is
learning method is the ‘delta rule’, which is based on ‘d’ value), the network is again trained with increased
the minimization of the sum of squares of the error number of epochs and so the process is repeated as
obtained in Eq(4). The reductionin the sum of squares described above. In the present study, the second stop-
of the error is performed by iteratively modifying the ping criteria has been adopted due to its superior learn-
numerical values of the weights in the direction of the ing efficiency.
steepestdescent with respect to the eBattfti, 1992).

The weights in the hidden-output layer are adjusted 2.2. Statistics for model testing and evaluation

first, followed by the adjustments of the weights in the

input-hidden layer. The weights in the successive itera-  The statistical indicators for testing and evaluating
tions are modified according to the following equation the model are systematic and unsystematic root mean
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square error (RMS&and RMSKEy), mean bias error
(MBE), mean square error, coefficient of determina-
tion (2), linear best fit constant) and gradient),
mean of the observed and predicted concentratidn (
and P, respectively) and their standard deviatioas (
andop, respectively) and? values Willmott, 1982). It

is not uncommon to find models that have been evalu-

ated by the correlation coefficient” (Gardner and
Dorling, 200Q. However, the /2 statistic may not
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Inthe presentwork, ANN-based N@odels are devel-
oped at a traffic intersection and at an arterial road in
the Delhi city, considering both the meteorological and
the traffic characteristic variables. The criteria used in
developing the ANN-based NOmodels are listed in
Table 1 Ten meteorological and six traffic characteris-
tic variables have been used for the model formulation.
The models have been formulated using three choices
of input data sets. Firstly, considering both meteorolog-

be appropriate in assessing the accuracy of air-quality ical and traffic characteristics input data (ANNNK)2

model predictionsQomrie, 1997. The model evalu-
ation based ons2 statistics mostly fails due to the

the second, considering only meteorological input data
(ANNNO2g); the third, considering only traffic input

presence of ‘lag’ between source emission quantity and data (ANNNOZ). The output corresponding to these

the ambient pollutant concentration. The ‘lag’ is due to
adverse meteorological conditions (inversion) which
implies the accumulation of pollutants in the ambient
environment during ‘odd’ hours of the day when there
are no source emissionkhlare and Sharma, 1999

The ‘d’ is a descriptive statistics. It reflects the degree

inputs is the 24 h average NQoncentrations. The
choice of inputs to model are directly connected to the
guantity of information given to the neural network
and is generally constituted from the meteorological
and traffic characteristic data.

The 24h NQ concentration data were collected

to which the observed variate is accurately estimated from Central Pollution Control Board (CPCB), New

by the simulated variate. The''is not a measure of

Delhi for a period of 3 years from January 1997 to

correlation or association in the formal sense, but rather December 1999, for both the AQCRs. The meteoro-
ameasure of the degree (based on ensemble average) ttngical data, including 24 h average observations of
which the model predictions are error free. At the same cloud cover, pressure, mixing height, sunshine hours,
time, ‘d’ is a standardized measure in order that it may visibility, temperature, wind speed, wind direction and
be easily interpreted and cross-comparisons of its mag-humidity were collected from Indian Meteorologi-
nitudes for a variety of models, regardless of units, can cal Department, New Delhi. The 24h average traf-
readily be made. It varies between 0 and 1. A computed fic characteristics data were collected from Central
value of 1 indicates perfect agreement between the Road Research Institute (CRRI), New Delhi, for the
observed and predicted observations, while 0 connotesrespective AQCRs. The vehicles were classified into
complete disagreemendflimott, 1982). The value of four groups, viz., two wheelers, three wheelers, four
‘d’ is expressed as: wheelers gasoline powered and four wheeler diesel

N ) powered, for which the emission factors (developed
Zizl(Pi - Oi)

d=1— by the Indian Institute of Petroleum), were used for
— — 2
S ¥ llP — Ol +10i - 0]

7
@ estimating CO and N@source strengthsPndir et

al., 1994. Table 2provides the details of input data
used for developing the 24 h average ANN-base¢gNO
models.

Two-year data from 1 January 1997 to 31 Decem-
ber 1998 was used for the model training and the data
from 1 January to 31 December 1999 was used for

Near the traffic intersections and busy roads, the model testing and evaluation purposes. At AQCR1,
VEE dispersion is influenced by two factors: first, the the total data set included, 783 values. About 67%
natural turbulence and second, the traffic generated (522) of the total data were used for the model train-
turbulence (traffic wake). The natural turbulence is ing, 16% (128) for the model testing and 17% (133)
represented by meteorological variables and the ‘traf- for the model evaluation. About 51% of the total data
fic wake’ relates to the traffic characteristic variables values were missing at AQCR2. Therefore, ‘training’,
(Gardner and Dorling, 1999; Eskridge and Hunt, 1979  ‘testing’ and ‘evaluation data set’ were selected ran-

whereO is the average of the observed data, arde
the predicted data.

2.3. Development of ANN-based NO, models
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Table 1
Criterion used in the ANN-based VEE modelling
Serialno.  Item Criterion used in the present study Similar criterion used in the previous
studies
1 Criteria for selection of neural  Input neurons = number of input variables Gardner and Dorling (1998, 1999)
network architecture Output neurons = number of output variable Comrie (1997)Perez and Trier (2001)

Hidden neurons = smallest number of neurons Viotti et al. (2002)
that yields a minimum prediction error on the
validation data setH{aykin, 2003}
2 Criteria for selection of neuron Input neurons = identity function Gardner and Dorling (1999, 20Q0)
activation functions Output neurons =identity function Viotti et al. (2002)
Hidden neurons = hyperbolic tangent function
(Waserman, 1989)
3 Criteria for selection of The learning parameters converge to the netViotti et al. (2002)
learning parameters work configuration and give best performance
on the validation data with least number of
epochs/iterationsHaykin, 2003

4 Criteria for initialization of Network weights are uniformly distributed Gardner and Dorling (1998)
network weights inside in the range of [(2.4/F;) to (+2.4FF;)],
whereF; is the total number of inputdHaykin,
2009
5 Training algorithm Back-propagation (Rumelheart and McClellandGardner and Dorling (1999), Comrie
1995) (1997), Rege and Tock (1996), Perez and
Trier (2001), Viotti et al. (2002)
6 Stopping criteria for neural Stopping criteria: after each training Gardner and Dorling (1998, 1999,
network training iterations/epochs the network is tested forits 2000} Viotti et al. (2002)

performance on validation data set. The training
process is stopped when the performance reach
the maximum on validation data sétdykin,
2001; Sarle, 1997
7 Statistics for model validation RMSE and { Willmott, 1982 Gardner and Dorling (1999, 20Q0)
Comrie (1997)Viotti et al. (2002)

8 ANN modelling data set Training data set: for training neural network Gardner and Dorling (1999Comrie
Test data set: for testing of neural network (1997) Viotti et al. (2002)
during training
Evaluation data set: for performance evaluation
of trained neural network model

domly for the development of the ANN-based NO  daily average meteorological and traffic characteristics
models. Out of 49% of available data, 33% (262) as predictor variables (17). Several hundred experi-
data were used for training, 10% (74) used for test- ments were performed to determine the best combi-
ing and 6% (47), for the model evaluation. The random nation of %’, ‘ ©’, the number of hidden layerd{,
selections of the data for training, testing and for the the learning algorithm and the transfer function. The
evaluation purposes are based on seasonal variationgjuidelines (discussed under Secti®dnwere consid-

"o

in meteorology and pollutant concentrations in the ered for choosing the optimumy’ ‘ u’, the number

AQCRs. of hidden layersH, the learning algorithm and the
activation function. The computational runs were con-

2.3.1. Meteorological and traffic characteristic ducted using the Stuttgart neural network simulator

variables as model input (SNNS) softwareftp://ftp.informatik.uni-stuttgart.de

The ANNNOZ1 and ANNNO2> models were to develop the optimum ANN-based N@odel. The
developed for AQCR1 and AQCRZ2, respectively, using inputs to these runs were the meteorological and traf-
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Table 2
Input variable for the ANN-based NGnodel
Model ID Architecture Input variables

Meteorological

Traffic characteristics

ANNNO2a1, ANNNO2a2 17:5:1

Cloud cover, humidity, mixing height,
pressure, Pasquill stabilftysun shine
hour, temperature, visibility, sin (wind

Two wheeler, three wheeler, four wheeler
(gasoline), four wheeler (diesel), source
strength (CO) and source strength (YO

directiony, cos (wind directior), wind

speed

ANNNO2g1, ANNNOZ2g> 10:5:1

Cloud cover, humidity, mixing height,

pressure, sun shine hour, temperature,
visibility, sin (wind direction), cos
(wind direction), wind speed

ANNNO2c;, ANNNOZ2co 5:5:1

Two wheeler, three wheeler, four wheeler
(gasoline), four wheeler (diesel) and source
strength of NQ

a Estimated using Pasquill-Gifford stability scherbtaina et al., 1982
b Wind direction data has been dichotomized using sine and cosine function.

fic characteristic variables in the input layer (17), the
output was in terms of only pollutant concentration,
i.e. NO,. The number of neurons in the hidden layer
were varied from 2 to 34. The descriptive statistics test,
i.e. ‘d value and RMSE \Villmott, 1982 were used

to arrive at optimum number of neurons in the hidden
layer. As a result, a fully connected feed-forward neu-
ral network with 17 neurons in the input layer, a single
hidden layer, with five hidden neurons and a single
neuron in the output layer shows best prediction on
the ‘test data setTable 3shows the statistics of 24 h
average ANN-based NOmodels with the number of
neurons in the hidden laydrables 4 and 8Bsts the per-
formance of the ANNNOZ; and ANNNO2y» models
during generalization on ‘test data set’ at AQCR1 and
AQCR?2, respectively. After repeated experiments, the

(ANNNO2g) to forecast 24 h average NQoncen-
tration using routinely monitored meteorological vari-
ables, second, to study the sensitivity of the traffic char-
acteristic variables. The number of training and valida-
tion patterns remains same as that of the ANNNO2
model. The network architecture of 10:5:1 was used
for the development of the ANNN@2model Fig. 3).

At AQCR1, the ANNNOZ; model predictions were
accurate after 500 training epoch having=0.001
and ‘u'=0.9 (Table §. At AQCR2, the model predic-
tions were accurater{’=0.001 and .’ = 0.5) after 400
training epochTable 7.

2.3.3. Traffic characteristic variables as model
input
The ANNNOZ:1 and ANNNOZ> models were

best model prediction on the test data set was achievedgeyeloped for AQCR1 and AQCRZ2, respectively, using

at 150 training epochs withy'=0.01 and ' =0.7 at
AQCR1; at AQCR2, the best ANNNQ2 model pre-
diction was achieved after 250 training epochs with
‘n’=0.001 and ¢’ =0.3. Fig. 2shows the architecture
of the models with 17 predictor variables (17:5:1).

2.3.2. Meteorological variables as model input

The ANNNOZ; and ANNNOZ2 models were
developed for AQCR1 and AQCRZ2, respectively, using
daily average meteorological data as predictor vari-
ables. The purpose of formulating this model is
two-fold. First, to develop ANN-based NOmodels

daily average traffic characteristics data as predic-
tor variables. These models were developed with five
traffic characteristic variables as input to the model,
i.e. two-wheeler, three-wheeler, four-wheeler gasoline-
powered, four-wheeler diesel-powered and the source
strength of N@. The 5:5:1 network architecture was
used for the development of the modelsg( 4). At
AQCR1, the best ANNNOg; model prediction was
obtained at#’'=0.001 and (+'=0.3, with 40 training
epochs Table §. At AQCR2, the best ANNNO2,
model prediction was obtained on the test data setat 160
training epochs withy)’ =0.001 and +'=0.5 (Table 9.
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Table 3 Table 5
Experimental simulation results for optimization of the hidden layer Estimates of the statistics during generalization of the ANNNO?2
neurons for the 24 h ANN-based N@odel model
Number of Mean square error after Statistical parameter Epoch d RMSE
hidden neurons network stabilization 7 RMSE 50 0.51 20.2
100 0.54 19.3
2 0.04657 0.58 B6 150 0.539 18.85
3 0.04046 0.44 129 200 0.545 18.66
4 0.03803 0.47 1a5 250 0.546 18.65
5 0.03777 0.63 18 300 0.543 18.79
6 0.03774 0.44 169 350 0.535 19.06
7 0.03802 0.48 108 400 0.529 19.38
8 0.03657 0.45 89 450 0.523 19.67
9 0.03647 0.44 113
10 0.03758 0.45 111
11 0.03703 0.40 198
12 0.03984 0.40 113
13 0.03994 0.42 1a9 Table 6
1‘51 gggggg 81‘21 igg Estimates of the statistics during generalization of the ANNREHO2
16 0.03731 0.39 125 model
17 0.04014 0.40 108 Epoch d RMSE
18 0.03815 0.39 193 100 0.58 8.23
19 0.03798 0.39 199 200 0.59 8.06
20 0.04151 0.40 180 300 0.59 7.93
21 0.03896 0.39 120 400 0.598 7.86
22 0.04000 0.47 81 500 0.598 7.82
23 0.03888 0.40 183 600 0.595 7.82
24 0.04538 0.56 1 700 0.594 7.85
25 0.03896 0.40 187 800 0.594 7.87
26 0.03843 0.44 113 900 0.593 7.89
27 0.04216 0.56 997 1000 0.592 7.90
28 0.04604 0.58 70
29 0.04464 0.52 34
30 0.04576 0.57 80
31 0.04606 0.58 B7
32 0.03871 0.40 195
33 0.04299 0.43 94 Table 7 o o
34 0.04614 0.58 9 Estimates of the statistics during generalization of the ANNBO2
model
Epoch d RMSE
Table 4 50 0.524 19.4
Estimates of the statistics during generalization of the ANNNO2 100 0.528 19.16
model 150 0.528 19.16
200 0.528 19.15
Epoch d RMSE 250 0529 19.13
50 0.597 8 300 0.529 19.11
100 0.625 720 350 0.53 19.11
150 0.627 718 400 0.53 19.10
200 0.625 29 450 0.539 19.11
250 0.622 32 500 0.539 19.11
300 0.467 D 550 0.533 19.12
350 0.47 D5 600 0.533 19.13
400 0.44 1069 650 0.529 19.16
450 0.44 1048 700 0.529 19.18

500 0.44 1078 750 0.528 19.23
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Table 8

Estimates of the statistics during generalization of the ANN{O2

model

Epoch d RMSE

5 0.265 291

10 0.34 2307
15 0.43 1259
20 0.44 976
25 0.44 903
30 0.44 884
35 0.44 877
40 0.44 875
45 0.43 875
50 0.40 875
55 0.40 875
60 0.40 875
65 0.40 875
70 0.40 875
75 0.40 875
80 0.40 875
85 0.40 875
90 0.40 875
95 0.40 875

100 0.40 875

Table 9

Estimates of the statistics during generalization of the ANN{O2

model

Epoch d RMSE
20 0.41 19.55
40 0.41 19.55
60 0.41 19.55
80 0.41 19.54

100 0.41 19.52

120 0.41 19.52

140 0.41 19.51

160 0.41 19.48

180 0.41 19.50

200 0.41 19.52

3. Results and discussion

Table 10gives the performance statistics of the
trained ANN-based N@models prediction on the eval-

respectively. At AQCR1gp is close to the standard
deviation of the observed data. At AQCR2, the differ-
ence between the standard deviations of the observed
and predicted data is quite high. This explains that
the ANNNOZy1 model is reproducing the variations
in the evaluation data set at AQCRL1 with better accu-
racy than the ANNNOgZ, model. A low RMSE value

at AQCR1 indicates that the ANNNQZ2 model pre-
dictions are closely matching with actual observations
when compared with ANNNQ2 model predictions

at AQCR2. Further, the’ values for ANNNOZ1 and
ANNNO242 models are 0.76 and 0.59, respectively.
This explains that 76% of the model predictions are
error free at AQCR1 and 59% at AQCR2. It shows
that the ANNNOZ1 model is more accurate than the
ANNNO245.

Table 10summarises the performance statistics of
the ANNNOZs; and ANNNOZs, model predictions on
the evaluation data set at AQCR1 and AQCR2, respec-
tively. The mean values of the predicted NEncen-
tration at both the AQCRs are lower than the observed
mean values. The MBE values at AQCR1 and AQCR2
are —4.29 and—3.5 ppb, respectively, indicating the
tendency of the models to under predict. The differ-
ence between the standard deviation of the observed
and the predicted data at AQCR2 is higher than at
AQCRL1. Itexplains that the ANNNG model predic-
tions are closer to observed values when compared with
the ANNNOZ, model. Further, alow RMS&value at
AQCR1 also indicates that the ANNN@2model pre-
dictions are closely matching with actual observations
when compared to the ANNNQ@2 model predictions.
The ‘d’ values for the ANNNOZ2; and ANNNOZ2
models explains that at AQCR1, 73% of the model pre-
dictions are error free and at AQCR?2, itis 55%. It shows
thatthe ANNNOZ21 model at AQCR1 is more accurate
than the ANNNOZ3>.

Table 10provides the performance statistics of the
ANNNO2c; and ANNNOZ> model predictions on
evaluation data set at AQCR1 and AQCR2, respec-
tively. At both the AQCRs, the mean values of model

uation data set at both the AQCRs. The mean values predictions are slightly lower than the observed mean

of ANNNO2a1 and ANNNOZ, model predictions

values. The MBE values at AQCR1 and AQCR2 are

are slightly lower than the observed mean values. The negative, indicating the tendency of the models to under
MBE values at AQCR1 and AQCR2 are negative indi- predict. The standard deviationsp) values of the
cating the tendency of the models to under predict. ANNNO2¢; and the ANNNOZ22 model predictions

The standard deviations§) of the ANNNO2,; and

are very low when compared with the observed stan-

ANNNO24> model predictions are 6.9 and 4.87 ppb, dard deviationsdp). It explains that both the models
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Table 10

Performance statistics the ANN-based NO2 models

Site Model ID Statistic

5(ppb) ﬁ(ppb) oo (ppb) op(ppb) MBE MSE RMSE 2 d a (ppb) b
b by ——————————————
(PPD)  (PPD) e oo
(ppb) (ppb)

AQCR1 ANNNOZ 35.1 31.7 104 6.9 -34 6906 65 5.05 0.47 0.76 15.7 .06
ANNNO2g; 35.1 30.8 1 6.56 —-4.29 7832 741 4.86 0.45 0.73 16.04 42
ANNNO2c; 35.1 33.1 104 0.74 —-1.94 1109 1049 0.75 0.1 0.25 32.89 .007

AQCR2 ANNNOZy 30.2 27.8 A 4.87 —-2.34 7744 801 4.41 0.18 0.59 21.2 D
ANNNO2z, 30.2 26.7 A 4.68 -35 9025 853 4.35 0.12 0.55 21.46 07
ANNNO2:, 30.2 27.3 A 0.44 —-2.85 9643 986 0.44 0.03 0.3 2757 -0.01

are inadequate to reproduce the variations in the eval-

uation data set. Further, the high RM$SHalues also
indicate that both the models perform poorly on the
evaluation data set. Thé‘values for the ANNNOZ21
and ANNNOZ2 models explain that at AQCR1, 25%
of the model predictions are errors free and at AQCR?2,
it is 30%. It shows that both the models perform poorly
on the evaluation data set.

3.1. Comparative performance of the models

For short-term average data (1 h), it is evident that
the relationship between Nvith meteorological and
traffic characteristic variables is complex and highly
non-linear Gardner and Dorling, 1999, 20p@omrie
(1997)andGardner and Dorling (1998, 2006bserved
the out-performance of the neural network model at
sub daily time scale when the non-linearity of the sys-
tem was more apparent and only small to marginal
gains in model performance at the daily time scale.

0.91 ppb for the ANNNOR; model when compared
to the ANNNOZ ;. However, the RMSE value for
the ANNNOZ2 model is showing 0.52 ppb increase
when compared to the ANNNQ2. Further, the &
values for AQCR1 indicates that, the ANNNg2
(d=0.73) model performance decreases marginally
when compared to the ANNNQ2 (d=0.76). Simi-
larly, at AQCR2, the ANNNOg2 model performance
(d=0.55) also shows marginal decrease when com-
pared to the ANNNOgZ, model ¢=0.59). The &
value indicates that the ANNNQ@2 model ¢=0.25)
performs poorly at AQCR1, when compared with the
ANNNO241 (d=0.76) and the ANNNOg; (d=0.73)
models. At AQCR2, the ANNNQ2, model ¢=0.3)
also shows poor performance when compared with
the ANNNOZ, (d=0.55) and ANNNOZ> models
(d=0.59). The poor performance of the models can
be explained by the following facts. Firstly, these mod-
els are developed considering only traffic characteris-
tic variables as their inputs. As a result, the models

The present study supports the effect of the increaseexplain the NQ dispersion only due to the ‘traffic

in averaging time period on the prediction perfor-
mance of the models. As a result, marginal differ-

wake’ effects. Secondly, due to the absence of mete-
orological input variables, these models fail to take

ence in the model performance has been observedinto accountthe ‘lag effectihare and Sharma, 1999

after elimination of the traffic characteristic variables
from the model input. It may be due to the increase
in time averaging interval (1-24 h), which smoothens
out the temporal variations of the pollutant concen-
tration with meteorological and traffic characteris-
tic variables, which, in turn, implies that the real

non-linear pollutant—-meteorology and pollutant-traffic
relationships, gradually approach to the linear form
(Gardner and Dorling, 20Q0The facts are explained

by the test statistics. The RMgEalues increase by

This phenomena frequently occurs during critical win-
ter periods (November—March), when inversion condi-
tions prevail during night time, particularly 4-6 h after
6:00 p.m. (10:00 p.m.—6:00 a.m.). As result, the mod-
els fail to explain the seasonal variations present in the
NO; dispersion characteristics.

The predictive capability of ANN models depends
on number of modelling parameters, i.e. selection of
model inputs, number of hidden layers and its neurons,
learning algorithm and learning parameters and stop-
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ping criteria Gardner and Dorling, 1998; Dimopoulos are used as inputg € 0.25, for AQCR1 and =0.3, for
et al., 1999. Nevertheless, in most studies, the prob- AQCR2).
lem associated in developing optimal ANN models is
reported Gevrey et al., 2003; Aitkenhead et al., 2003;
Olden and Jackson, 2002; Ozesmi and Ozesmi, 1999 Acknowledgement
Over-training is one of the main concerns in devel-
oping ANN models. It occurs when network learns We are thankful to Central Pollution Control Board,
the noisy details in training the data, which results in Indian Meteorological Department and Central Road
poor generalization capabilitieBaruelo and Tomasel — Research Institute, New Delhi for providing necessary
(1997) used the two parameters of the network, i.e. data.
selection optimum number of hidden neurons and error
goal to reduce over-training probleirek et al. (1996)
andLae et al. (1999)sed fixed number of iterations ~ References
to avoid over-training of networks. However, the val-
idation of these methods indicated the development Alsugair, AM., Al-Qudrah, A.A., 1998. Artificial neural network
. approach for pavement maintenance. J. Comput. Civil Eng.
of over tr_amed ANN models. The step-by-step pro- ASCE 2 (4), 249-255.
cedure discussed in the present work addresses theantonic, 0., Hatic, D., Krian, J., Bukocev, D., 2001. Modelling
problems encountered during development of optimum  groundwater regime acceptable for the forest survival after the

ANN-based models using back-propagation training  building of the hydro-electric power plant. Ecol. Model. 138
algorithm. ~(1-3), 277-288.
Aitkenhead, M.J., McDonald, A.J.S., Dawson, J.J., Couper, G.,
Smart, R.P,, Billett, M., Hope, D., Palmer, S., 2003. A novel
method for training neural networks for time-series prediction in
4. Conclusions environmental systems. Ecol. Model. 162 (1-2), 87-95.
Barciela, R.M., Garcia, E., Fernandez, E., 1999. Modelling primary

The present work provides vital statistics and guide- production in a costal embayment affected by upwelling using

. . . dynamic ecosystem models and artificial neural networks. Ecol.
lines on the choice of the ANN-based VEE modelling Myodel 120 (2X3) 199-211

parameters, e.g. ‘when to stop’ the training process paiti, R., 1992. First and second order methods for learning
and determination of the learning parameters in back-  between steepest descent and Newton's method. Neural Com-
propagation learning algorithm. Multilayer neural net- put. 4, 141-166.
work technique has been used to develop short-term Berry, T., Linoff, J., 1997. Data Mining Techniques. John Wiley and
ANN-based NQ model for the air-quality prediction Sons, NY. .
h . a y_p ) Bose, N.K., Liang, P., 1998. Neural Network Fundamentals with

purposes at a traffic intersection and arterial road inthe  Graphs, Algorithms and Applications. Tata McGraw Hill Pub-
Delhi city. The daily time series of N&xoncentration, lishing Company Limited, New Delhi, India.
meteorological and traffic characteristic variables, col- Boznar, M., Lesjak, M., Malker, P., 1993. A neural network based
lected for the years from 1997 to 1999, have been used method for short-term predictions of ambientSf0ncentrations
; . . d luati f the ANN-b d in highly polluted industrial areas of complex terrain. Atmos.
or training, testing and evaluation o e ase Environ. 27B (2), 221-230.
VEE models. The models have been formulated fol- grosse, s., Guegan, J.F., Toureng, J.N., Lek, S., 1999. The use of
lowing three choices of input data sets. Firstly, with artificial neural networks to assess fish abundance and spatial
both meteorological and traffic input data. Secondly, occupancy in the littoral zone of a mesotrophic lake. Ecol. Model.
with only meteorological input data and lastly with only 120 (2-3), 299-311. _ o

. Chen, T., March, C.F., 1971. Effect of highway configurations on
traffic Input dat"_’l' The results S_hOW that the_ ANN-based environmental problems dynamics of highway associated air pol-
NO2 models (with meteorological and traffic character- lution. In: Englund, H.M., Berry, T. (Eds.), Second International
istic inputs) perform satisfactorily at both the AQCRs Clean Air Congress. Academic Press, NY, pp. 35-40.
(d=0.76, for AQCR1 and = 0.59, for AQCR2). There Chon, T.S., Park, Y.S., Moon, K.H., Cha, E.Y., 1996. Patternizing

is a marginal decrease in model performance when communities by using an artificial neural network. Ecol. Model.

. . 90 (1), 69-78.
onIy meteorologlcal Inputs have been usee 0'73' Comrie, A.C., 1997. Comparing neural networks and regression
for AQCR1 and/ = 0.55, for AQCR2). The models per- model for ozone forecasting. J. Air Waste Manage. Assoc. 47,

form poorly when only traffic characteristic variables 653-663.



114

Dimopoulos, I., Chronopoulos, J., Sereli, A.C., Lek, S., 1999. Neural
network models to study relationships between lead concentra-
tion in grasses and permanent urban descriptors in Athens city
(Greece). Ecol. Model. 120 (2-3), 157-165.

Dorzdowicz, B., Benz, S.J., Sonta, A.S.M., Scenna, N.J., 1997. A
neural network based model for the analysis of carbon monox-
ide concentration in the urban area of Rosario. In: Power,
H., Tirabassis, T., Brebbia, C.A. (Eds.), Air Pollution, vol. V.
Computational Mechanics Inc., Southampton, Boston, pp. 677—
685.

Eskridge, R.E., Hunt, J.C.R., 1979. Highway modelling. Part I: pre-
diction of velocity and turbulence fields in the wake of vehicles.
J. Appl. Meteorol. 18 (4), 387-400.

Esplin, G.L., 1995. Approximate explicit solution to the general line
source problem. Atmos. Environ. 29 (12), 1459-1463.

Gardner, M.W.,, Dorling, S.R., 1996. Neural network modelling of the
influence of local meteorology on surface ozone concentrations.
In: Proceedings of International Conference on GeoComputa-
tion, University of Leeds, UK, pp. 359-370.

Gardner, M.W.,, Dorling, S.R., 1998. Artificial neural networks: the
multilayer perceptron: a review of applications in atmospheric
sciences. Atmos. Environ. 32 (14-15), 2627-2636.

Gardner, M.W., Dorling, S.R., 1999. Neural network modelling and
prediction of hourly NQ and NG concentrations in urban air in
London. Atmos. Environ. 33 (5), 709-719.

Gardner, M.W., Dorling, S.R., 2000. Statistical surface ozone
models: an improved methodology to account for non-linear
behaviour. Atmos. Environ. 34 (1), 21-34.

Gevrey, M., Dimopoulos, |., Lek, S., 2003. Review and comparison of
methods to study the contribution of variables in artificial neural
network models. Ecol. Model. 160 (3), 249-264.

Hanna, S.R., Briggs, G.A., Hosker, Jr. R.P., 1982. Handbook on
Atmospheric Diffusion. Technical Information Center, U.S.
Department of Energy, USA.

Haykin, S., 2001. Neural Networks: A Comprehensive Foundation,
second ed. Pearson Education Inc., New Delhi, India.

Heymans, J.J., Baird, D., 2000. A carbon flow model and network
analysis of the northern Benguela upwelling system. Namibia
Ecol. Model. 126 (1), 9-32.

Hornik, K., Stinchcombe, M., White, H., 1989. Multi layer feed
forward networks are universal approximators. Neural Netw. 2,
359-366.

Karul, C., Soyupak, S., Cilesiz, A.F., Akbay, N., Germen, E., 2000.
Case studies on the use of neural networks in eutrophication
modelling. Ecol. Model. 134 (2-3), 145-452.

Khare, M., Sharma, P., 1999. Performance evaluation of general finite
line source model for Delhi traffic conditions. Transport. Res. D4,
65-70.

Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junni-
nen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton,
T., Foxall, R., Cawley, G., 2003. Extensive evaluation of neural
network models for the prediction of N@nd PM10 concentra-
tions, compared with a deterministic modelling system and mea-
surements in central Helsinki. Atmos. Environ. 37 (32), 4539—
4550.

Lae, R., Lek, S., Moreau, J., 1999. Predicting fish yield of African
lakes using neural networks. Ecol. Model. 120 (2-3), 325-335.

S.M.S. Nagendra, M. Khare / Ecological Modelling 190 (2006) 99-115

Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J.,
Aulagnier, S., 1996. Application of neural networks to modelling
nonlinear relationships in ecology. Ecol. Model. 90 (1), 39-52.

Lek, S., Guegan, J.F., 1999. Atrtificial neural networks as a tool in
ecoligical modelling: an introduction. Ecol. Model. 120 (2-3),
65-73.

Levine, E.R., Kimes, D.S., Sigillito, V.G., 1996. Classifying soil
structure using neural networks. Ecol. Model. 92 (1), 101-108.

Longhurst, J.W.S., Lindley, S.J., Watson, A.F.R., Conlan, D.E., 1996.
The introduction of local air quality management in the United
Kingdom: a review and theoretical framework. Atmos. Environ.
30 (283), 3975-3985.

Manel, S., Dias, J.M., Ormerod, S.J., 1999. Comparing discriminant
analysis, neural networks and logistic regression for predicting
species distributions: a case study with a Himalayan river bird.
Ecol. Model. 120 (2-3), 337-347.

Milionis, A.E., Davis, T.D., 1994. Regression and stochastic mod-
els for air pollution. Part I: review comments and suggestions.
Atmos. Environ. 28 (17), 2801-2810.

Moseholm, L., Silva, J., Larson, T.C., 1996. Forecasting carbon
monoxide concentration near a sheltered intersections using
video traffic surveillance and neural networks. Transport. Res.
D1, 15-28.

Nagendra, S.M.S., Khare, M., 2002. Line source emission modelling:
review. Atmos. Environ. 36 (13), 2083—2098.

Nagendra, S.M.S., Khare, M., 2004. Artificial neural network based
line source models for vehicular exhaust emission predictions of
an urban roadway. J. Transport. Res. D Transport Environ. 9 (3),
199-208.

Nunnari, G., Nucifora, A.F.M., Randieri, C., 1998. The application of
neural techniques to the modelling of time-series of atmospheric
pollution data. Ecol. Model. 111 (2-3), 187-205.

Olden, J.D., Jackson, D.A., 2002. llluminating the black box: a ran-
domization approach for understanding variable contributions in
artificial neural networks. Ecol. Model. 154 (1-2), 135-150.

Ozesmi, S.L., Ozesmi, U., 1999. An artificial neural network
approach to spatial habitat modelling with interspecific interac-
tion. Ecol. Model. 116 (1), 15-31.

Park, Y.S., Cereghino, R., Compin, A., Lek, S., 2003. Applications
of artificial neural networks for patterning and predicting aquatic
insect species richness in running waters. Ecol. Model. 160 (3),
265-300.

Paruelo, J.M., Tomasel, F., 1997. Prediction of functional character-
istics of ecosystems: a comparison of artificial neural networks
and regression models. Ecol. Model. 98 (2-3), 173-186.

Perez, P., Trier, A., 2001. Prediction of NO and Nédncentrations
near a street with heavy traffic in Santiago. Chile. Atmos. Envi-
ron. 35 (10), 1783-1789.

Pundir, P.P., Jain, A.K., Gogia, D.K., 1994. Vehicle Emissions and
Control Perspectives in India. Indian Institute of Petroleum,
Dehradun, India.

Rege, M.A., Tock, R.W., 1996. A simple neural network for esti-
mating emission rates of hydrogen sulphide and ammonia from
single point source. J. Air Waste Manage. Assoc. 46, 953-962.

Rumelhart, D.E., McClelland, J.L., 1995. Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognitions, vol.
1. MIT Press, Cambridge, England.



S.M.S. Nagendra, M. Khare / Ecological Modelling 190 (2006) 99-115 115

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning inter- Application and Hardware Implementations. IEEE Press, NY, pp.
nal representations by error propagation. In: Rumelhart, D.E., 3-24.
McClelland, J.L. (Eds.), Parallel Distributed Processing, eighth Shi, J.P., Harrison, R.M., 1997. Regression modelling of hourly NO
ed. MIT Press, Cambridge, England, pp. 45-76. and NG concentration in urban air in London. Atmos. Environ.
Ryan, M., Muller, C., Di, H.J., Cameron, K.C., 2004. The use of arti- 31 (24), 4081-4094.
ficial neural networks (ANNS) to simulate N@missions from Swingler, 1996. Applying Neural Networks: A Practical Guide. Aca-

temperate grassland ecosystem. Ecol. Model. 175 (2), 189-194. demic Press, London.
Sarle, W., 1997. Neural network frequently asked questions, Viotti, P, Liuti,G., Genova,P.D.,2002. Atmospheric urban pollution:

ftp://ftp.sas.com/pub/neural/FAQ.html. applications of an artificial neural network (ANN) to the city of
Scardi, M., Harding Jr., L.W., 1999. Developing an empirical model Perugia. Ecol. Model. 148 (1), 27-46.
of phytoplankton primary production: a neural network case Wasserman, P.D., 1989. Neural Computing, Theory and Practice.
study. Ecol. Model. 120 (2-3), 213-223. Van Nostrand Reinhold, NY.
Schalkoff, R., 1992. Pattern Recognition: Statistical, Structural and Willmott, C.J., 1982. Some comments on the evaluation of model
Neural Approaches. Wiley, NY. performance. Bull. Am. Meteorol. Soc. 63, 1309-1313.

Simpson, P.K., 1989. Foundations of neural networks. In: Sinen- Zurada, J.M., 1997. Introduction to Artificial Neural Systems. West
cio, E.S., Lau, C. (Eds.), Artificial Neural Networks: Paradigms, Publishing Company, Mumbai, India.



	Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
	Introduction
	Materials and methods
	ANN-based VEE modelling approach
	Selection of the optimal ANN-based VEE model architecture
	Activation function
	Learning parameter
	Initial network weights
	Training and testing
	Stopping criteria

	Statistics for model testing and evaluation
	Development of ANN-based NO2 models
	Meteorological and traffic characteristic variables as model input
	Meteorological variables as model input
	Traffic characteristic variables as model input


	Results and discussion
	Comparative performance of the models

	Conclusions
	Acknowledgement
	References


